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Mechanisms for the passage of electric current through a fluidized bed are discussed, and cor- 
responding estimates for the effective electrical conductivity are given. 

Two basic charge-transfer mechanisms in a fluidized bed may be isolated [I]: the first is associated 
with the passage of current density through the continuous phase of the bed, taking into account the perturbing 
influence on the potential field of freely suspended particles with a different electrical conductivity, which 
causes local distortion of the current lines; the second is due to brief random contacts between the randomly 
pulsating particles of the fluidized bed, leading to the spontaneous formation of conducting circuits of con- 
tinuously changing configuration. In the case when highly conducting particles are fluidized by a dielectric 
or poorly conducting medium, the second mechanism may be not only important but even dominating. 

When bubbles are present, the bed may be regarded as some hypothetical disperse medium, the con- 
tinuous phase of which is the dense phase of the bed containing discrete elements of disperse phase (bubbles); 
the physical parameters of the disperse phase are approximately the same as those of the fluidizing agent. 

If particle collision and contact conductivity play a small role, the effective electrical conductivity X of 
a homogeneous fluidized bed may be estimated using the theory of [2], developed for heat or mass transfer in 
disperse media. Specifically, k may be written in the form 

)-i 
)~=)'o~, ~ =  1 - - ( •  •  , 9== l - - e ,  (1) 

the pa r ame te r  ~ being given by the equation 

:! )-'i' P~J = P I 3 aa3 ~* (r -+- x."r) ndx, (2) 
x ~ a  

where J is the vec tor  of the mean e l e c t r i c - c u r r e n t  density in the sys tem;  n and ~* are  the vector  of the ex te r -  
nal normal  and the e lec t r ica l  potential ,  averaged over  an ensemble of neighboring par t i c les ,  at the surface of 
an isolated (sample) par t ic le  x = a, the center  of which is at the point r. 

To determine q:' the following boundary problem must  be solved [2] 

v [ B ( x / a ) v c p ' ] = O ,  x > a ;  A~*=0;  a > / x > / O ,  

r x--+oo, (~*< oo, v=: 0, 

q' --  Jx  = r ~.onVq.' - -  ;~.nJ =/.,V~*, x = a, 

(3) 

where 

B ( ~ )  = 1 - ( z - - l ) ~ ,  

B (})  =: [~ = 1 -:- ( •  I) ,~m, ~ "  "~ 3 ,  ~ __ __x 
a 

(4) 

The substitution ~' = f(x)Jx and q* =/~Jx [the latter expression identically satisfies Eq. (2)] transforms 
Eq. (3) to give 

Institute of Heat and Mass T rans f e r ,  Academy of Sciences of the Beloruss ian  SSR, Minsk. Institute 
of Mechanics,  Academy of Sciences of the USSR, Moscow. Transla ted  f rom Inzhenerno-Fiz icheski i  Zhurnal,  
Vol. 35, No. 11, pp. 889-900, November ,  1978. Original ar t ic le  submitted September 19, 1977. 

1352 0022-0841/78/3505-1352 $07.50 �9 1979 :Plenum Publishing Corporat ion 



I 
1~: . . . . .  ~ i -  . . . . . .  ~ i 

o - - ~  I 

e - - ' 3  
v - - ~  i 

�9 I + - - 5  9 I 
~--e: I i 

, : o  - -  o - 7  . . . . . .  

~  t - - 9  / 
i ~ - - . 0  o - ~ / i  
' , - - : : r  o " 

: : r  

'. i 

o Ce o,,~ o,5 p 

Fig. 1. Dependence of re la t ive  diffusional e l ec t r i ca l  
conductivity of the mix tu re  on i ts  concentrat ion for  dif-  
fe ren t  x (f igures on curve) obtained f r o m  the solution 
of Eq. (5) (continuous lines) and the approx imate  f o r -  
mula in Eq. (6) (dashed l ines).  T u r n e r ' s  expe r imen ta l  
data:  1) ~t = 14,400; 2) 10,100; 3) 2540; 4) 1450; 5) 1040; 
6) 580; 7) 400; 8) 290; 9) 220; 10) 190; 11) 160. When 
p = 0.3 all the points  combine into one, indicated by the 
filled square .  

~"- : -3[ '  dlnB(~) (~[, _:_ t,) = O, ~-- x , 
a 

[ = , t t - - 1 ,  / ' ~=e ( •  E:=I ;  /--~0, ~--+-oo, 
(5) 

where  a p r i m e  denotes  di f ferent ia t ion with r e s p e c t  to ~. (This is a two-point  boundary p rob lem for  a second-  
o rde r  o rd ina ry  di f ferent ia l  equation,  and powerful  numer ica l  methods a r e  avai lable  for  its solution. The " r e -  
dundant" boundary condition in Eq. (5) s e r v e s  to de te rmine  the value of ~, which acts  as the e igenvalue of the 
problem.)  The dependence of/3 on p and >t in Eq. (1), de te rmined  f r o m  the value of ~ found numer ica l ly  f r o m  
the solution of Eq. (5), is  i l lus t ra ted  in Fig. 1.* 

If the t rue function B(~) in Eq. (4) is r ep laced  by a step function, equal to unity when 1 -< ~ < 2 and to/3 
when ~ - 2, i t  is s imple  to obtain an analyt ic  solution of Eq. (3), use  of which in Eqs.  (1) and (2) leads  to the 
following approx imate  fo rmula  [2] 

= [ 7 •  (1 - -  ,o) :- 1 7  -:- 7p]-1{• ( 1 - 1 lp) ~- 5 - -  11 p - [• (1 + 

-v l lp )  w5--11912-~ [7• : 17 : 7p][• - 7 p ) =  7(l--p) lh2}.  (6) 

The dependence resu l t ing  f r o m  Eq. (6) is shown by the dashed curves  in Fig. 1. It is evident that when 
~t ~ 1-10 the d i f ference  between the accura te  and approx imate  f o r m s  of ~ is insignif icant ,  but at l a rge  >t the r e -  
sult  obtained on in tegra t ing  Eq. (5) mus t  be used. For  compar i son ,  Fig. 1 also gives the data of T u r n e r  (Cam- 
bridge) on the e l ec t r i ca l  conductivity of a homogeneous bed of spher ica l  pa r t i c l e s  of ion-exchange res in  (nar -  
row f rac t ions  in the range 0.5-1 ram) fluidized by aqueous medium chloride solutions of different  e l ec t r i ca l  
conduct ivi t ies ,  obtained in v e r y  "pure"  conditions.T The a g r e e m e n t  between the r e su l t s  of expe r imen t  and 
theory is fa i r  when ~t ~ 100-200, and i n c r e a s e s  s teadi ly  with fu r the r  dec r ea se  in ~ which, of course ,  con-  
f i r m s  the p r e s e n t  theory.  However ,  with d e c r e a s e  in e l ec t r i ca l  conductivity of the fluidizing solution the 

*These calculat ions were  p e r f o r m e d  by I~. Kh. Lipkina,  to whom thanks a r e  offered.  
1These data were  given in the following paper :  J.  C. R. T u r n e r ,  "The e lec t r i ca l  conductivity of l iquid-fluidized 
beds , "  A. I. C h . E .  National  Meeting,  St. Louis (May, 1972). The authors  would like to thank T u r n e r  for  
showing them the text  of the paper .  
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Fig. 2. Collision geometry  (a) and dependence of 
relat ive distance of compress ion  on the relative col -  
lision time (b). 

relat ive effect of contact conduction in a bed of high concentration r i ses  sharply and as a resul t  the effective 
bed e lec t r ica l  conductivity at ~ -~ 10,000-15,000 is approximately an o rder  of magnitude higher  than at ~ ~  100. 
However,  in a bed of relat ively low concentrat ion,  in which par t ic le  collisions are  r a r e  or  ineffective, con- 
tact  conduction pract ical ly  d isappears :  data for ~ in the range 100-1500 appear  on the theoret ical  curve as a 
single point, corresponding to ~ = ~ this point is also shown in Fig. 1. Overal l ,  Fig. 1 provides a good i l lus-  
trat ion of the role of contact conduction through spontaneously forming par t ic le  circui ts  even in relat ively "un-  
disturbed" beds with weak par t ic le  pulsations. 

Now consider  the conductivity of a fluidized bed or  its dense phase due to coll isions,  and the accompany-  
ing contacts ,  between pulsating par t ic les .  The continuous phase is assumed to be negligibly small ,  so that the 
f i r s t  cha rge - t r ans f e r  mechanism,  considered above, may in general  be neglected. It is evident that contact 
conduction depends p r imar i ly  on the p roper t i es  of the random pseudoturbulent pulsations of the par t ic les  - in 
par t icu la r ,  on the mean energy of their  relat ive motion - and also on the e lec t r ica l  cha rac te r i s t i c s  of the 
par t ic le  mater ia l .  Because the fac tors  affecting the intensity of the (in general) anisotropic pseudoturbulent 
motion of the d isperse  phase and the appearance of mic rod i scharges  in par t ic le  collisions are  so d iverse ,  
there is little hope at p resen t  of construct ing a r igorous  theory of "skeleton" e lec t r ica l  conduction in a f lui-  
dization bed which would allow rel iable quantitative es t imates  to be obtained. Therefore ,  the present  analysis  
is l imited to the formulat ion of some model relat ions that ref lect  the main physical  p roper t i es  of this p rocess  
in qualitative t e rms .  For  s implici ty,  it is assumed that the random pulsations of the par t ic les  are isotropic 
(this is known to be incor rec t  for  beds of very  fine part icles)  and that the cur ren t  strength is small  (so that 
there are  prac t ica l ly  no mic rod i scha rges  and the e lec t r ica l  conductivity is determined by the extent of the area 
of physical  contact formed on collision), and the general  method of analysis  of skeleton conduction developed in 
[3] is used. 

If an e lec t r ic  cur rent  passes  through some part icle  in the direct ion z, in which its contacts with neigh- 
boring par t ic les  l ie,  then by analogy with [3] the potential gradient in the par t ic le ,  averaged over  the par t ic le  
volume, may be wri t ten in the form 

/= 1 h 
( Vq: ) z ~ 2aa~.).~ In ---v ' v =: ~ -  <[ 1, (7) 

where Jz IS the corresponding current  strength and h is the distance of compress ion  on contact (denoted by 25 
in [3]). In contras t  to the permanent  par t ic le  contacts in a motionless  granular  bed considered in [3], in the 
presen t  case h and v cannot be assumed to be even approximately the same for all contacts ,  in view of the 
considerable energy spread of the colliding par t ic les .  In addition, both h and v change in the course  of col l i -  
sion. Therefore  the quantity In (l/u) in Eq. (7) must  be averaged both over the collision time and over  the en-  
semble of possible collisions. Assuming  that this has been done, the basic discussion of [3] may be repeated,  
to obtain the following formula  for the coefficient of skeleton e lec t r ica l  conductivity of the fluidized bed 

3 .-t~p 
A ~ Z~, (8) 

8 ( - - l a y  ) 

where the angle brackets  denote the given averaging over  the coll isions and ~ is a pa rame te r  replacing,  in the 
presen t  case ,  the coordination number of the par t ic les  in a fixed granular  bed used in [3]. If only binary col-  
l isions are  considered,  ~ is equal to the mean fract ion of the time in which any of the par t ic les  remains  in 
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and i l lus t ra ted  in Fig. 2b. 
suit  

contact with i ts  neighbors .  Simultaneous coll is ion between three  or  m o r e  pa r t i c l e s  may  evidently only be 
neglected under  the condition that  this f rac t ion  is smal l  in compar i son  with unity. If this is not the case ,  
exceeds  this f rac t ion  and, as  the f rac t ion  tends to unity,  ~ tends to the value of the coordination number  c h a r -  
a c t e r i s t i c  for  the type of packing rea l i zed  in the concentra ted  fluidized bed. Fo r  random packing,  this number  
may  be evaluated approx imate ly  as  the bulk-concent ra t ion  function of the pa r t i c l e s  (see [4], for  example) .  

Averag ing  over  the coll is ions involves succes s ive  averag ing  over  the t ime of a single coll ision and over  
the re la t ive  par t i c le  ve loc i t ies  (or the ene rgy  of the i r  re la t ive  motion). Below, such a calculation is made on 
the usual  hypotheses  of s ta t ic  homogenei ty  and i so t ropy  of the s y s t e m ,  following f r o m  the above assumpt ions .  
The pa r t i c l e s  a r e  a s s um ed  to be identical  ideal sphe re s  and the damping effect  of the thin l aye r  of continuous 
phase  between approaching pa r t i c l e s  on the t rue  coll ision veloci ty  is d i s r ega rded .*  

Suppose that  the configuration of pa r t i c l e s  in contact  is desc r ibed  by the angle 0 between the line joining 
the par t i c le  cen te r s  and the di rect ion of the re la t ive  veloci ty  w, as shown in Fig. 2. The compres s ion  dis tance 
will  evidently depend on the value v = w s in0.  On the bas i s  of the considera t ions  in [6], h is desc r ibed  over  the 
durat ion of col l is ion by the equation 

/ dh "~2 
1 ~  1 - -  o z  �9 (9 )  

Hence,  in p a r t i c u l a r ,  it is  s imple  to obtain [6] an expres s ion  for  the min imum dis tance between the pa r t i c l e s  h 0 
and half  the col l is ion t ime  t0t 

l 

(m_m~Z) ~'~ = ( m Z ~ t / 5 ~  dx 1.47 
ho = , - - ,  , to ~ g 4  / J V 1 -  ,:~'------~ (Kgo  / (lo) 

0 

The solution of Eq. (9) under the condition h = 0 at t = 0, us ing  Eq. (10), de t e rmines  the function h/h 0 = 
�9 (t./t0) , given implici t ly  by the re la t ion  

h h~ 

t o 1.47 ~ ] / r l _ x  s12 
0 

This  function is used  to ave rage  In (l/v) = - I n u  over  the coll is ion t ime ,  with the r e -  

1 

( - -  lnv ) '  = - -  In 4a h--~-~ - -  j ' ln �9 (x) dx ~ - -  In h~ + 0.685. 

0 

(12) 

In the homogeneous and i so t ropic  si tuation cons idered ,  averag ing  over  the col l is ion geomet ry  in fact  
means  averag ing  over  the impac t  p a r a m e t e r  r (see Fig.  2a). Taking into account  that  the effect ive coll ision 
c ro s s  section is 47ra 2, while r = 2asin0 and dr = 2ad (sin0),  the r e su l t  obtained is as follows 

2 a  l 

( In sin 0 } ' = ~ ,t 2.~r In sin 0 dr = 2 x In x dx . . . .  0.5, (13) 
o 

0 0 

so that a f t e r  this averag ing  Eqs. (10) and (12) yields  

( - - l n v } " ~ - - ! n  ~ a  - - ~  ---5- ( - l n s i n O ) " - 0 " 6 8 5  ~ - - l n  ~ k / J _ 1o085. (14) 

*This assumpt ion  is valid for  sufficiently l a rge  or  heavy pa r t i c l e s  and for  fluidization by gases .  If the pa r t i c l e s  
a r e  smal l  and fluidized by liquid d rops ,  m o s t  pa r t i c le  in terac t ions  a r e  rea l i zed  through the random p r e s s u r e  
and veloci ty f ields of the liquid phase  (see the d iscuss ion  in [5]). This  is evidently the cause of the " inef fec t ive-  
ness"  of d i rec t  coll is ions in a bed of low concentrat ion with p = 0.3 in T u r n e r ' s  expe r imen t s  (see Fig. 1). 
Jln [6] cent ra l  coll is ions of two sphe res  were  considered.  It is readi ly  evident that the p re sence  of a tangen-  
t ial  veloci ty  component  does not change the energy  re la t ion in [6], which leads to Eq. (9), r e g a r d l e s s  of whether  
the energy  of re la t ive  " tangential"  motion is conserved  or conver ted  to heat.  
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It  only r e m a i n s  to ave rage  over  the re la t ive  veloci ty of pa r t i c le  coll ision w. In the homogeneous and i so -  
t ropic  case  being cons idered ,  the par t i c le  dis t r ibut ion over  the ve loci t ies  of random motion is desc r ibed  by 
the Maxwell f o rmu l a ,  in which the mean pulsat ion energy  of a single pa r t i c le  re(W2>/2 appea r s  as  a p a r a m e t e r .  
The dis t r ibut ion fo r  the re la t ive  veloci ty  is obtained by the s tandard  means  a f t e r  rep lac ing  the par t i c le  m a s s  m 
in the Maxwell fo rmula  by the reduced m a s s  of the two p a r t i c l e s ,  which for  identical  spher ica l  pa r t i c l e s  is 
m/2. Thus ,  normal ized  to unity,  the dis t r ibut ion of w takes the f o r m  

S i n c e  

( )3,.,(3~ 
3 -exp IV ~ vo2dw. (15) dF (w) = 4n 4n < lV z ~ 4< > 

i ] In 4 < W 2 > In x e - ~ g ' x  I < It"- > r '  <ln~.> = l n w d F ( w ) =  l ' , - t  . ) [  3 dx  ~],~--n r In 4 3 (16) 

0 0 

and the values  of the gamma funetion and i ts  de r iva t ives  a r e  known, ave rag ing  Eq. (14) ove r  the dis t r ibut ion 
function in Eq. (15) y ie lds  the r e su l t  

< - - l n v > , ~ - - I n  ~ a  ---ff<lnr~,> 1.085 ~ - - l n  ~ a  k - - l . 0 7 1 ~ - f f  

E (17) 
T w ~ 

( 1 - -  ~-~) d, < W"> 

which depends only on the properties of the particle material and the mean-square pulsation velocity of the 
particles. 

The parameter ~ will now be estimated; in accordance with the foregoing it is identified with the mean 
fraction of the time spent by a particle in contact with other particles. Evidently, ~ = T~0, where T is the mean 
collision time and w is the collision frequency. Using Eq. (10), averaging over the impact parameter leads, by 
analogy with Eq. (13), to the relation 

2 < t o ,\ " ~  2.94 ', sin - I  ~0 ) ~, 3.27 (18) 

Averag ing  this quanti ty us ing  the dis t r ibut ion function in Eq. (15) leads ,  by analogy with Eq. (16), to the e x p r e s -  
sion 

T = 2 to 3.27 I T )  = a.27 2 _ _ _  r , .. l / ' ~  , 4k* ( W z ~ ~ 3.8T-.  ~, s 
0 

~ 1t2'~- ? J,2 
(i 9) 

Evident ly ,  (1 - ~%o)w 0 = co, where  w 0 is  the col l is ion f requency  as ~" -* 0. There fo re ,  

TO) 0 
= T(., . . . . . .  ~ T(o0, Tw0 ~ 1. (2 0) 

- -  T { O  0 

Enskog theory for  a dense gas of solid sphe re s  is used to evaluate  ~o0 [7]. Express ing  the numer i ca l  concen-  
t ra t ion  of pa r t i c l e s  as the f rac t ion  obtained on dividing p by the par t ic le  volume and rep lac ing  3kT/2 in the 
usual  co l l i s ion- f requency  fo rmula  by the mean  pulsat ional  energy  of a single pa r t i c l e  m <W2>/2, the following 
r e su l t  is obtained 

~ Z(9) 129 : W"-' : ~ 
1 3~ a ' ( 2 I) 

where X is the Enskog factor, describing the change in collision frequency in a dense gas in comparison with 
an attenuated gas in which the particle size is negligibly small in comparison with the free path length. At 
small p, the Boltzmann-Clausius equation applies 

7.(p)~1 -- 0,625 (49) -0,287(49)" - . . . ,  ~, /il. (22) 

At values  of p approaching  the concentra t ion of a densely  packed bed (i .e. ,  at  the onset  of fluidization) [7] 
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Fig. 3. Charac te r i s t ic  variat ion in 
skeleton e lec t r ica l  conductivity of a 
homogeneous bed with increase  in f i l -  
t rat ion velocity of the liquid phase. Re -  
gion 1 corresponds  to a motionless bed 
and regions H and III to a fluidized bed: 
the dashed curve shows the real  change 
in e lec t r ica l  conductivity around the on-  
set of fluidization. 

(P) ~ (p/p.),, 3 o ~ p, --  p. (23) 
1 - -  ( o / p , ) '  3 ' 

So as to be specif ic ,  Eq. (23) will be used here.  Then f rom Eqs. (19)-(21) 

04 / 3 
~ 14.7 ' -~ z .~ I ~ T." (24) 

This formula is valid if roy 0 << 1; it is evidently no longer valid at values of p sufficiently close to p., i r r e s p e c -  
tive of the size T w. When zoo 0 ~ 1, ~ is approximately equal to the coordination number z of a par t ic le  in a 
motionless bed. 

Thus, the effective skeleton e lec t r ica l  conductivity in Eq. (8) may be expressed  as a function of the bed 
concentration and also the physical  p a r a m e t e r s  and mean-square  pulsational velocity of its par t ic les ,  and its 
determination in fact  reduces  to the gathering of information on this pulsational velocity.  The theory of pseudo-  
turbulent motion in finely d isperse  beds was developed in [5] on the basis of a model according  to which the 
energy input to this motion is due to the work  of the fluidizing-agent flux on the random fluctuations of the bed 
concentrat ion,  while par t ic le  interact ion occurs  mainly through the continuous phase. Calculations of var ious  
charac te r i s t i c s  of such significantly anisotropic  pseudoturbulence are  given in [8]. Recent ly ,  the method of [5] 
was used to analyze random par t ic le  motion in coarse ly  d isperse  fluidized beds, when random Magnus forces  
acting on the par t ic le  play a marked role;  par t ic le  interaction is by di rec t  collision, and it is acceptable to a s -  
sume a uniform distribution of the pulsational energy over t ranslat ional  and rotational degree of f reedom.* The 
following formula was obtained 

P 

where u is the f i l t rat ion velocity of the gas in a homogeneous bed or  the dense phase of an inhomogeneous bed, 
while ~(0) is a slowly vary ing  function of O, depending also in the Reynolds number (Re), and for  flow around a 
single par t ic le  also on the pa ramete r .  For  different p and Re this function takes values on the order  of 10 ~  
10. 

An al ternat ive model of pulsational motion in a very concentrated bed - valid for moving granular  beds 
and possibly at the onset  of fluidization, when par t ic le  fr ict ion is considerable ,  and par t ic les  rol l  around one 
another ,  etc. - was proposed in [9]; this leads to the express ion 

160p 2.3 {'do t 2. t/3 
<IV2> ~ ( l - -~)z  \ ~ /  tP. _p,,3), (26) 

*These resul ts  are  repor ted  in the following paper :  Yu. A. Buevich, V. V. Butkov, and V. M. Llventsov,  Con- 
struction of  a Rational Theory  of a Coarse ly  Disperse Fluidized Bed [in Russian] ,  Paper  Read to the Fifth 
Sc ien t i f i c -Techn ica l  Conference,  Ural Polytechnic Institute,  Sverdlovsk (February ,  1976). 
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where y is the velocity-recovery coefficient in collisions between spheres, introduced in [9]. 
Eq.  (25) wil l  be used  below,  but al l  the d i s c u s s i o n s  m a y  be s imply  appl ied to Eq. (26). 

In the case  when Eq. (24) is va l id ,  s imp le  t r a n s f o r m a t i o n s  in Eq. (8) give 

To be spec i f i c ,  

A p,2..'~ p4~/,s~.(p)2'5 (p,__p)~/5 
at= ~.--~ ~17,3 e4:ST~/Sg(T ,p) pt,/a pl/S, (27) 

which introduces the function 

and the p a r a m e t e r  

2{ 
,. j ,  + ,.773 

E T =  
(I - -  o 2) d ,u  z ' 

depending only on the p r o p e r t i e s  of the p a r t i c l e  and a s ingle  p r o c e s s  p a r a m e t e r ,  the f i l t r a t ion  ve loc i ty  u. 

When ~0 ~ I, it may be assumed that ~ = z and p = p,, and Eqs. (8), (17), and (25) give 

(2s) 

(29) 

w h e r e  

3n p,z I. 18p,z 

8 g ,  (7", p ,  - -  p) g ,  (7", p ,  - -  p) 

g,  (T, P. - -  P) = ~ [ln r - -  In (p. - -  p)] + 1, 

I = 2 In P*~* - - ~ -  ~ -~-'1.773, ~ , = ~ ( p , ) .  

(30) 

(31) 

Equat ion  (30) is a p p r o x i m a t e l y  val id  when p ,  - p < 5,  w h e r e  5 m a y  be e s t i m a t e d  f r o m  the condit ion vc~ 0 ~ 1. 
Suppose that  p ,  = 0.6; then 

5 N (44.1)~ ap~ (~ , e f2 )2 /aT  2 ' 3 ~  i0s7--2 ~ (32) 

The p a r a m e t e r  T is usua l ly  v e r y  l a r g e  and 5 is smal l .  F o r  e x a m p l e ,  if E ~ 1011 dN/cm 2, u ~ 102 c m / s e c ,  dl ~ 
3 g /em 3, and a ~  0.3,  then T ~ 108.5 and so 5 ~ 10 -1"5 ~ 0.03. T r i s e s  and 5 fa l l s  with d e c r e a s e  in p a r t i c l e  s ize  
and dens i ty  and with i n c r e a s e  in Young '  s modu lus  of  the p a r t i c l e  m a t e r i a l .  

T h e r e  fo l lows a b r i e f  d i s c u s s i o n  of the dependence  of the r e l a t ive  ske le ton  e l e c t r i c a l  conduct iv i ty  on u 
(or on p,  which  is  r e l a t e d  to u by the we l l -known equat ion e x p r e s s i n g  the equal i ty  of the p a r t i c l e  weight  to the 
sum of the A r c h i m e d e s  and h y d r o d y n a m i c  fo r ce s )  fo r  a homogeneous  bed. In the reg ion  u<  u ,  t he re  is a 
m o t i o n l e s s  f i l t e r ed  g r a n u l a r  bed;  in this  r eg ion ,  c~ tends  to z e r o  as  u - -  u,  in a c c o r d a n c e  with the r e su l t  in [3], 
which is shown convent iona l ly  by cu rve  I in Fig.  3 . t  At  f lu id iza t ion  n u m b e r s  c lose  to unity ( region II in Fig.  3), 

is  given by Eq. (30), a c c o r d i n g  to which c~ i n c r e a s e s  rap id ly  in a n a r r o w  reg ion  of u (or p).  F ina l ly ,  in r e -  
gion III ,  w h e r e  p ,  - p > 5, Eq.  (27) app l i e s ,  and acco rd ing ly  a fa l l s  f a i r ly  rap id ly  with i n c r e a s e  in ve loc i ty .  At  
some  u = u m v e r y  c lose  to u . ,  t he re  is a m a x i m u m  of the e l e c t r i c a l  conduct iv i ty ,  which is usua l ly  one o r  two 
o r d e r s  of  magni tude  l o w e r  than the e l e c t r i c a l  conduct iv i ty  of a m o t i o n l e s s  g r a n u l a r  bed with u = 0. F o r  h o m o -  
geneous  beds ,  6 is sma l l  and U m ~  u,. This  expla ins  why,  in e x p e r i m e n t s  with such beds ,  usua l ly  only d e -  
c r e a s e  in e l e c t r i c a l  conduct iv i ty  with i n c r e a s e  in u is o b s e r v e d  (see,  e .g . ,  [10] and the data in F ig .  1). The 
c h a r a c t e r i s t i c  dependences  of  a on p f r o m  Eqs.  (27) and (30) fo r  p ,  ~ 0.6, ~{p) ~ 5, and va r i ous  T a r e  shown 

in Fig.  4. 

In i nhomogeneous  beds the s ta te  of the dense  phase  is c h a r a c t e r i z e d  by a value  of p that  d i f fe r s  f r o m  p,,  
about  which p r a c t i c a l l y  nothing is known. H o w e v e r ,  it m a y  be a s s u m e d  that ,  with i n c r e a s e  in f lu id iza t ion 
n u m b e r ,  p d e c r e a s e s  f r o m  p,  to some  l imi t ing  value  independent  of  the f lu id iza t ion number .  Ana logous ly ,  the 
e l e c t r i c a l  conduct iv i ty  A i n c r e a s e s  with i n c r e a s e  in f lu id iza t ion n u m b e r  f r o m  z e r o  to a c e r t a i n  cons tan t  value.  
The  ef fec t ive  e l e c t r i c a l  conduct iv i ty  of the bed i t se l f  n e v e r t h e l e s s  v a r i e s ,  as  a r e s u l t  of i n c r e a s e  in the bulk 
concen t r a t ion  PB of  bubbles  in it. Using the model  in [2], it is evident  that  

t i n  fact ,  a s  noted in [3], a p r o p o r t i o n  of the con tac t s  be tween p a r t i c l e s  is  r e t a ined  even at  the m o m e n t  of  
onse t  of  f lu idizat ion.  S t r ic t ly ,  t h e r e f o r e ,  ~ does  not  van i sh  (see the da shed  cu rve  in Fig .  3). 
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A~ =: pA. (33) 

where A is the e lec t r ica l  conductivity of the dense phase and ~ is charac ter ized  by the resul ts  in Fig. 1 and in 
Eq. (6}, if ~ is understood to mean the rat io h0/h and p the value PB. The quantity A B is the s tat is t ical  mean 
of the e lec t r ica l  conductivity of a real  inhomogeneous bed, and Eq. (33) is valid i r respect ive  of the mechanism 
of current  propagation in the dense phase [i.e., for sys tems  with a highly conducting liquid phase,  A in Eq. (33) 
may be replaced by X]. If k 0 < A, then A B dec reases  with r ise  in the fluidization number and, as before,  is 
descr ibed by a curve of the same type as in Fig. 1, but this decrease  is considerably slower than for a homo-  
geneous bed; the maximum of the e lec t r ica l  conductivity corresponds  to fluidization numbers differing con- 
siderably f rom unity. The presence  of an e lect r ical -conduct ivi ty  maximum at the point of transit ion of the bed 
to a fluidized state was stated in [11-14], and a maximum was noted in [13, 14]; the fall in e lec t r ica l  conduc- 
tivity with increase  in fluidization number was observed in [10-17] and elsewhere.  

The dependence of the coefficient of skeleton e lec t r ica l  conductivity on the charac te r i s t i cs  of the par t ic les  
and the fluidizing agent may easi ly be derived using the explicit expression for u appearing in the definition of 
T in Eq. (29). 

Thus,  e lec t r ica l  conduction in a fluidized bed occurs  by one of two mechan i sms ,  distinguished previously 
in [18]. In the case of poorly conducting par t ic les  and a highly conducting fluidizing agent,  so that h = Pk0 >> 
A = a~l, the f i r s t  ("diffusional") mechanism operates .  In the case when the relation between the conductivities 
is r eve rsed ,  the second mechanism,  associa ted  with spontaneous part icle  contacts ,  comes into force.  The 
changeover between mechanisms occurs  a tan  e lectr ical -conduct ivi ty  ratio of the phases satisfying the o r d e r - o f -  
magnitude relation 

, ( 3 4 )  

this being the condition at which both mechanisms  of e lec t r ica l  conduction are  important  in the bed. A very  
rough es t imate  of the e lec t r ica l  conductivity may be obtained by simply summing the coefficients X and A found 
above. The construct ion of a more  accurate  theory within the f ramework  of the method of [2] must  involve 
taking into account the independent t ransfer  of d isperse  phase over the skeleton, as a lready noted in [2, 3], 
and this is a separate  problem. 

Generally speaking, the conducting circui ts  responsible for skeleton e lec t r ica l  conductivity are  greatly 
fluctuating. The continuous c i rcui ts  direct ly  coupling the e lect rodes  which are  usual for motionless granular  
beds may evidently only be formed in fluidized beds at the very  onset  of fluidization, when ~ ~ z. Outside 
this range,  the charge t rans fe r  is by binary coll isions between par t ic les  which exchange their  charges ,  and 
continuous c i rcui t s ,  if they appear at all,  play no important  role,  as a lready noted in [18]. 

I ~ \ - :  ~ . . . . . . .  

:'r - . .--.- . . . .  

"":~ i ...... ~ i. ",,'. . . .. 

Fig. 4. Dependence of relative skeleton conduc- 
tivity on p . - p  for different T according to Eqs. 
(30) and (27) (a and b, respectively).  The values 
p, = 0.6 and �9 = 5 are  adopted; the f igures on the 
curves  give the values of logT.  
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In conclusion,  note that this calculat ion of skeleton e l ec t r i ca l  conduction has en t i re ly  d i s r ega rded  ques -  
t ions re la t ing  to ionization of the fluidizing medium and the appea rance  of m i c r o d i s c h a r g e s ,  so that the app l i ca -  
tion of the r e su l t s  obtained is confined to the pas sage  of re la t ive ly  weak cur ren t s .  In addition, if  pa r t i c l e s  of 
grea t ly  d i f fer ing potential  collide (which is poss ib le  if a l a rge  cu r ren t  flows in the sys t em) ,  charge  t r a n s f e r  
may  be l imi ted  not by the effect ive contact  a r ea  but by the capaci tance of the pa r t i c l e s ;  attention was drawn 
to this f ea tu re  in [18], but it  has  been d i s r ega rded  above. 

The model  developed h e r e  has  no pre ten t ions  at all  to being an exhaust ive solution of the p rob lem of e l e c -  
t r i ca l  conduction in f luidized s y s t e m s ,  and mus t  be regarded  only as some bas is  fo r  fu r the r  work.  
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is the par t ic le  rad ius ;  
a re  the densi ty  of liquid and pa r t i c l e  m a t e r i a l ;  
is  Young's  modulus~ 
is the densi ty  of the re la t ive  par t i c le  veloci ty dis t r ibut ion;  
is the function defined in Eq. (5); 
a r e  the functions introduced in Eqs.  (28) and (31); 
is the dis tance of compress ion ;  
is a quantity in Eq. (31); 
is  a p a r a m e t e r  in Eq. (9); 
is  the pa r t i c l e  m a s s ;  
is the impac t  p a r a m e t e r ;  
a r e  p a r a m e t e r s  in Eqs.  (17) and (29); 
is the t ime;  
is the f i l t ra t ion  veloci ty  of f luidizing agent  in ahomogeneous  bed or the dense phase  of inhomo- 
geneous bed; 
is  the no rm a l  component  of re la t ive  par t i c le  veloci ty  w; 
is  the m e a n - s q u a r e  pLLlsational veloci ty  of the pa r t i c l e s ;  
is the spat ia l  coordinate;  
is the coordinat ion number  of a par t ic le  in the mot ion less  bed; 
is the re la t ive  skeleton e l ec t r i c a l  conductivity; 
is  a quantity introduced in Eq. (4); 
is the re la t ive  dfffusional e l ec t r i c a l  conductivity; 
is  the v e l o c i t y - r e c o v e r y  coefficient  in a coll is ion between s p h e r e s ;  
is a quantity defined in Eq. (32); 
i s  the poros i ty ;  
is  the effect ive "coordinat ion n u m b e r '  of a par t ic le  in a fluidized bed; 
is  the angle of coll ision; 

are the skeleton electrical conductivity and electrical conductivity of an inhomogeneous bed; 
are the dfffusional electrical conductivity and electrical conductivity of liquid and solid phases; 
is a parameter introduced in Eq. (1); 
is  the f rac t ion  of contact  a r e a ,  equal to h/4a; 
is  the re la t ive  coordinate ,  x/a; 
is the bulk concentrat ion of pa r t i c l e s ;  
is  Po i s son t s  ra t io ;  
is the mean  col l is ion t ime;  
is the function impl ic i t ly  defined by Eq. (11); 
is  the e l ec t r i c a l  potential ;  
is the Enskog coefficient;  
is  a function introduced in Eq. (25); 
is the col l is ion f requency.  

I n d i c e s  

0 is the value at  the s tage of c lo se s t  approach of colliding pa r t i c l e s ;  
* is the value at the onset  of f luidlzation in the bed at coll ision,  as r ~ D .  
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EQUATION OF STATE OF THE LIQUID 

ALKALI METALS. I. 

N. B. Vargaftik, V. A. Alekseev, 
V. F. Kozhevnikov, Yu. F. Ryzhkov, 
and V. G. Stepanov 

UDC 669.88:536.71 

Exper imenta l  PVT data a r e  given for  sodium,  rubid ium,  and ces ium in the liquid phase .  P r o -  
cedures  and m e a s u r e m e n t  e r r o r s  a r e  d iscussed .  

Introduction.  The liquid alkal i  m e t a l s ,  in view of the re la t ive  s impl ic i ty  of the i r  s t r uc tu r e ,  can se rve  
as r e f e rence  i t ems  for  studying the liquid meta l  s tate of a substance.  On the other  hand, no doubts a r i s e  con-  
cerning the grea t  p r o s p e c t s  for  using these me ta l s  in va r ious  f ields of new technology,  including the i r  use as 
coolants.  

However ,  despi te  the cons iderable  in t e re s t  which has  been shown in recen t  y e a r s  toward liquid me ta l s  in 
genera l ,  and to the alkali  me ta l s  in pa r t i cu l a r  [1-3], up to the p r e s e n t  t ime their  fundamental  c h a r a c t e r i s t i c s  
such as the equation of state and its de r iva t ives  - compress ib i l i t y  and t he rma l  expansion - r ema in  ve ry  li t t le 
studied. 

Fo r  the alkali  me ta l s  in the liquid phase ,  the t e m p e r a t u r e  range  of re l iable  PVT data is l imi ted ,  in p r a c -  
t ice ,  to 200~ [4-7]. The main quality of data about the the rmophys ica l  p r o p e r t i e s  of the fused meta l s  of the 
f i r s t  group r e f e r s  to the line of sa tura t ion  [8, 9]. In the s ing le -phase  region,  in addition to the pape r s  m e n -  
tioned above,  PVT data ex is t  on po tass ium at p r e s s u r e s  up to 100 a tm and t e m p e r a t u r e s  up to 2050~ [10], 
a lso  on rubidium in the t e m p e r a t u r e  range 300-1400~ and p r e s s u r e s  up to 400 bar  [11]. Data exis t  for  ces ium 
on densi ty ,  obtained by a radioact ive  method,  over  a wide range of p a r a m e t e r s  of s tate  (P -< 600 a tm,  600~ -< 
T-<2500~ [12, 13]. 

The p r e s e n t  pape r  is devoted to an expe r imen ta l  study of the equation of s tate  of liquid ces ium,  rubidium,  
and sodium,  in the t e m p e r a t u r e  range 500-1000~ and p r e s s u r e s  up to 750 a tm for  ces ium and rubidium,  and 
up to 500 a im for  sodium. 

T r a n s l a t e d  f rom Inzhenerno-F iz i ches td i  Zhurnal ,  Vol. 35, No. 5, pp. 901-907, N o v e m b e r ,  1978. Or ig i -  
nal a r t i c le  submit ted  F e b r u a r y  7, 1978. 
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